4-, 8-, 20- AND 40 MEGABYTES

iMC004FLSP, iMC008FLSP, iMC020FLSP, iMC040FLSP

- Single Power Supply
- Automatically Reconfigures for 3.3 V and 5 V Systems
- 150 ns Maximum Access Time with 5 V Power Supply
- 250 ns Maximum Access Time with 3.3 V Power Supply
- High-Performance Random Writes
 0.85 MB/S Sustained Throughput
 1 KB Burst Write at 10 MB/S
- 25 µA Typical Deep Power-Down

- Revolutionary Architecture
 - Pipelined Command Execution
 - Write during Erase
 Series 2 Command Super-Set
- State-of-the-Art 0.6 µm ETOX™ IV Flash Technology
- 1 Million Erase Cycles per Block
- Up to 640 Independent Lockable Blocks
- PCMCIA 2.1/JEIDA 4.1-Compatible
- PCMCIA Type 1 Form Factor
- Series 2+ User's Manual

Intel's Series 2+ Flash Memory Card sets the new record for high-performance disk emulation and eXecute-In-Place (XIP) applications in mobile PCs and dedicated equipment. Manufactured with Intel's 28F016SA 16-Mbit (DD28F032SA 32-Mbit) FlashFile[™] memory, this card takes advantage of a revolutionary architecture that provides innovative capabilities, low-power operation and very high read/write performance.

The Series 2+ card provides today's highest density, highest performance nonvolatile read/write solution for solid-state storage applications. These applications are enhanced further with this product's symmetrically-blocked architecture, extended MTBF, low-power 3.3 V operation, built-in V_{PP} generator, and multiple block locking methods. The Series 2+ card's dual read and write voltages allow interchange between 3.3 V and 5.0 V systems.

December 1997

Order Number: 290491-007

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The iMC004FLSP, iMC008FLSP, iMC020FLSP, iMC040FLSP may contain design defects or errors known as errata. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation P.O. Box 5937 Denver, CO 80217-9808

or call 1-800-548-4725 or visit Intel's website at http://www.intel.com

COPYRIGHT © INTEL CORPORATION, 1997

CG-041493

*Third-party brands and names are the property of their respective owners.

CONTENTS

PAGE

1.0 SCOPE OF DOCUMENT5
2.0 PRODUCT OVERVIEW5
3.0 SERIES 2+ ARCHITECTURE OVERVIEW6 3.1 Card Signal Description6
3.2 Series 2+ Card Control Logic10 3.2.1 Address Decode Logic10
3.2.2 Data Control
4.0 DEVICE COMMAND SET14
4.0 DEVICE COMMAND SET14
4.0 DEVICE COMMAND SET14 5.0 DEVICE STATUS REGISTER17 6.0 PCMCIA CARD INFORMATION
4.0 DEVICE COMMAND SET14 5.0 DEVICE STATUS REGISTER17 6.0 PCMCIA CARD INFORMATION STRUCTURE19

PAGE
8.0 ELECTRICAL SPECIFICATIONS24
8.1 Absolute Maximum Ratings24
8.2 Operating Conditions24
8.3 Capacitance24
8.4 DC Characteristics25
8.5 DC Characteristics—CMOS Interfacing V _{CC} = 3.3 V26
8.6 DC Characteristics—CMOS Interfacing V _{CC} = 5.0 V27
8.7 DC Characteristics—TTL Interfacing V _{CC} = 3.3 V28
8.8 DC Characteristics—TTL Interfacing $V_{CC} = 5.0 V \dots 29$
8.9 AC Characteristics31
8.9.1 Read Operations: Common Memory31
8.9.2 Write Operations: Common and Attribute Memory33
8.9.3 CE#-Controlled Write Operations: Common and Attribute Memory35
8.9.4 Power-Up/Power-Down
8.10 Erase and Data Write Perfomance
9.0 PACKAGING39
10.0 ORDERING INFORMATION41
11.0 ADDITIONAL INFORMATION41

4

Number	Description			
-001	Original Version			
-002	Page Buffer Write to Flash Command Code correction (from 08H to 0CH)			
	Series 2+ Tuples and AC Characteristics Tables include support for 150 ns access			
-003	TTL DC Characteristics tables added			
	General DC Characteristics table changed to reflect TTL levels			
-004	AC Characteristics condensed to include V _{PP} pump information			
005	Series 2+ 8-Meg and 40-Meg Cards added to datasheet			
	Component Management Register tables reformatted			
	I _{CCR} values increased for CMOS and TTL			
	3.3 V timings updated to 250 ns.			
-006	Changed IPPSL and IPPS Max values			
-007	Changed CMOS Interfacing DC Characteristics to increase V_{CC} Sleep Current			

REVISION HISTORY

1.0 SCOPE OF DOCUMENT

The documentation for Intel's Series 2+ Flash Memory Card includes this datasheet and the *Series 2+ Flash Memory Card User's Manual* (297373). The datasheet provides all AC and DC characteristics (including timing waveforms) and a convenient reference for the device command set and the card's integrated registers (including the 28F016SA's status registers). The *Series 2+ Memory Card User's Manual* provides a complete description of the methods for using the card. It also contains the full list of software algorithms and flowcharts and a section for upgrading Intel's Series 2 Flash Memory Cards designs.

2.0 PRODUCT OVERVIEW

The 4-, 8-, and 20-Mbyte Series 2+ Flash Memory Cards each contain a flash memory array that consists of two, four, and ten 28F016SA TSOP memory devices, respectively. Each 28F016SA contains 32 distinct, individually-erasable, 64-Kbyte blocks. Therefore, the 4-, 8-, and 20-Mbyte cards contain 64, 128 and 320 independantly lockable blocks, respectively.

The 40-Mbyte Series 2+ Flash Memory Cards contain a flash memory array that consists of ten DD28F032SA TSOP memory devices. Each DD28F032SA contains two 28F016SA die in a single package, resulting in 64 distinct, individually-erasable, 64-Kbyte blocks. The 40-Mbyte cards have 640 independently lockable blocks.

The Series 2+ Card offers additional product features to those of the Series 2 Card family (refer to the iMC0XXFLSA datasheets). Some of the more notable card-level enhancements include: interchangeable operation at 3.3 V or 5.0 V, block locking and internal V_{PP} generation.

The Series 2+ card incorporates V_{CC} detect circuitry, referred to as SmartPower, to sense the voltage level present at the card interface. The card's control logic automatically configures its circuitry and the 28F016SA/DD28F032SA memory array accordingly. The Card Information Structure (CIS) reports that the card is 3.3 V or 5.0 V compatible. The card also detects the presence of 12.0 V on the V_{PP} pin and passes this supply to each memory device. When the 12.0 V power supply is unavailable, the card can generate the required V_{PP} via its internal V_{PP} generation circuitry, whether V_{CC} is 3.3 V or 5.0 V.

At the device level, internal algorithm automation allows write and erase operations to be executed using a two-write command sequence in the same way as the 28F008SA FlashFile memory in the Series 2 Card. A super-set of commands and additional performance enhancements have been added to the basic 28F008SA command set:

- Page Buffer Write to Flash results in writes up to four times faster than Series 2 Cards.
- Command Queueing permits the devices to receive new commands during the execution of the current command set.
- Automatic data writes during erase allows the 28F016SA to perform write operations to one block of memory while performing an erase on another block.
- Software locking of memory blocks provides a means to selectively protect code or data within the card.
- Erase all unlocked blocks provides a quick and simple method to sequentially erase all the blocks within a 28F016SA memory device.

The Series 2+ Card has two ways to put the flash devices into a sleep mode for reduced power consumption:

- Issue a command to individual devices, referred to as the software-controlled sleep mode. The device will retain status register data contents and finish any operation in progress using this approach.
- Write to the card's PCMCIA-compatible configuration and status register to activate a reset power-down to all devices simultaneously.

The card achieves its PCMCIA-compatible wordwide access by pairing the 28F016SA/ DD28F032SA devices resulting in an accessible memory block size of 64 Kwords. The card's decoding logic (contained within the ASICs) allows the system to write or read one word at a time, or one byte at a time by referencing the high or low byte. Erasure can be performed on the entire block pair (high and low byte simultaneously) or on the high and low portions separately. Although the 28F016SA/DD28F032SA support byte or wordwide data access, the byte interface was utilized within the card to allow the delivery of higher performance benefits, such as doubling the effective page buffer size and write performance.

The Series 2+ Card's ASICs also contain the component management registers that provide five control functions: ready-busy mode selection, software write protection, card status, voltage control, and soft reset.

The memory card interface supports the Personal Computer Memory Card Industry Association (PCMCIA 2.10) and Japanese Electronics Industry Development Association (JEIDA 4.1) 68-pin card format. The Series 2+ Flash Card meets all PCMCIA/JEIDA Type 1 mechanical specifications.

3.0 SERIES 2+ ARCHITECTURE OVERVIEW

The Series 2+ Card consists of three major functional elements—the flash memory array, card

control and SmartPower circuitry. The card control logic handles the interface between the flash memory array and the host system's PCMCIA signals. SmartPower circuitry provides the card's integrated V_{PP} generator and a means for detecting the socket's voltage levels.

3.1 Card Signal Description

The 68-pin PCMCIA format provides the system interface for the Series 2+ Flash Memory Card (see Tables 1 and 2). The detailed specifications for this interface is described in the PCMCIA 2.10 *Standard Specification*. The Series 2+ Flash Card product family conforms to the requirements of previous PCMCIA Versions Release 1.0, Release 2.0 and Release 2.01 of the *PC Card Standard*. Release 2.10 redefined pins 43 and 57 as VS₁ and VS₂ (previously REFRESH and RFU, respectively).

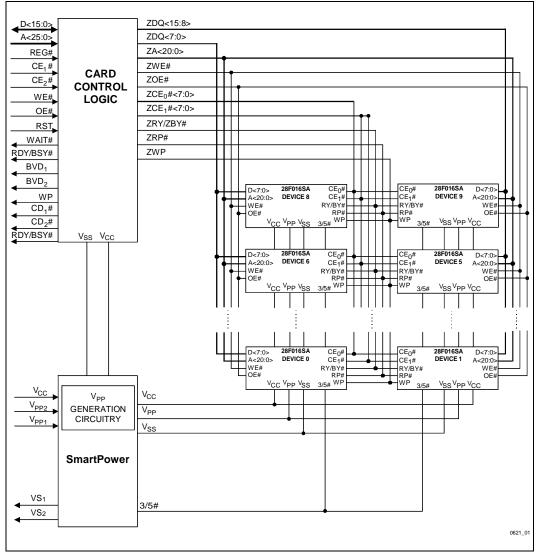


Figure 1. Series 2+ Flash Memory Card Block Diagram Showing Major Functional Elements

int_{el}.

Pin	Signal	I/O	Function	Active	Pin
1	GND		Ground		27
2	DQ ₃	I/O	Data Bit 3		28
3	DQ ₄	I/O	Data Bit 4		29
4	DQ ₅	I/O	Data Bit 5		30
5	DQ ₆	I/O	Data Bit 6		31
6	DQ ₇	I/O	Data Bit 7		32
7	CE ₁ #	Ι	Card Enable 1	LOW	33
8	A ₁₀	Ι	Address Bit 10		34
9	OE#	Ι	Output Enable	LOW	35
10	A ₁₁	Т	Address Bit 11		36
11	A ₉	Т	Address Bit 9		37
12	A ₈	Т	Address Bit 8		38
13	A ₁₃	Т	Address Bit 13		39
14	A ₁₄	Т	Address Bit 14		40
15	WE#	Ι	Write Enable	LOW	41
16	RDY/BSY#	0	Ready/Busy	LOW	42
17	V _{CC}		Supply Voltage		43
18	V _{PP1}		Supply Voltage		44
19	A ₁₆	Ι	Address Bit 16		45
20	A ₁₅	Ι	Address Bit 15		46
21	A ₁₂	Ι	Address Bit 12		47
22	A ₇	Ι	Address Bit 7		48
23	A ₆	Ι	Address Bit 6		49
24	A ₅	Ι	Address Bit 5		50
25	A ₄	Ι	Address Bit 4		51
26	A ₃	Ι	Address Bit 3		52

Table 1.	Series 2	2+ Flash	Memory	Card	Signals
----------	----------	----------	--------	------	---------

34 GND Ground 35 GND Ground 36 CD ₁ # O Card Detect 1 H 37 DQ ₁₁ I/O Data Bit 11 H 38 DQ ₁₂ I/O Data Bit 12 H 39 DQ ₁₃ I/O Data Bit 13 H 40 DQ ₁₄ I/O Data Bit 14 H 41 DQ ₁₅ I/O Data Bit 15 H	HIGH
29 A_0 I Address Bit 0 30 DQ_0 I/O Data Bit 0 31 DQ_1 I/O Data Bit 1 32 DQ_2 I/O Data Bit 2 33 WP O Write Protect H 34 GND Ground I 35 GND Ground I 36 CD ₁ # O Card Detect 1 H 37 DQ_{11} I/O Data Bit 12 I 38 DQ_{12} I/O Data Bit 14 I 39 DQ_{13} I/O Data Bit 13 I 40 DQ_{14} I/O Data Bit 14 I 41 DQ_{15} I/O Data Bit 15 I	HGH
30 DQ_0 I/O Data Bit 0 31 DQ_1 I/O Data Bit 1 32 DQ_2 I/O Data Bit 2 33 WP O Write Protect H 34 GND Ground G 35 GND Ground G 36 $CD_1#$ O Card Detect 1 H 37 DQ_{11} I/O Data Bit 12 G 39 DQ_{13} I/O Data Bit 13 G 40 DQ_{14} I/O Data Bit 14 G 41 DQ_{15} I/O Data Bit 15 G	HIGH
31 DQ_1 I/O Data Bit 1 32 DQ_2 I/O Data Bit 2 33 WP O Write Protect H 34 GND Ground G 35 GND Ground G 36 CD ₁ # O Card Detect 1 H 37 DQ_{11} I/O Data Bit 11 G 38 DQ_{12} I/O Data Bit 12 G 39 DQ_{13} I/O Data Bit 13 G 40 DQ_{14} I/O Data Bit 14 G 41 DQ_{15} I/O Data Bit 15 G	HIGH
32 DQ2 I/O Data Bit 2 33 WP O Write Protect H 34 GND Ground G 35 GND Ground H 36 CD1# O Card Detect 1 H 37 DQ11 I/O Data Bit 11 H 38 DQ12 I/O Data Bit 12 H 39 DQ13 I/O Data Bit 13 H 40 DQ14 I/O Data Bit 14 H 41 DQ15 I/O Data Bit 15 H	HIGH
33 WP O Write Protect H 34 GND Ground I 35 GND Ground I 36 CD ₁ # O Card Detect 1 I 37 DQ ₁₁ I/O Data Bit 11 I 38 DQ ₁₂ I/O Data Bit 12 I 39 DQ ₁₃ I/O Data Bit 13 I 40 DQ ₁₄ I/O Data Bit 14 I 41 DQ ₁₅ I/O Data Bit 15 I	HIGH
34 GND Ground 35 GND Ground 36 CD ₁ # O Card Detect 1 I 37 DQ ₁₁ I/O Data Bit 11 I 38 DQ ₁₂ I/O Data Bit 12 I 39 DQ ₁₃ I/O Data Bit 13 I 40 DQ ₁₄ I/O Data Bit 14 I 41 DQ ₁₅ I/O Data Bit 15 I	HIGH
35 GND Ground 36 CD ₁ # O Card Detect 1 I 37 DQ ₁₁ I/O Data Bit 11 I 38 DQ ₁₂ I/O Data Bit 12 I 39 DQ ₁₃ I/O Data Bit 13 I 40 DQ ₁₄ I/O Data Bit 14 I 41 DQ ₁₅ I/O Data Bit 15 I	
36 CD ₁ # O Card Detect 1 I 37 DQ ₁₁ I/O Data Bit 11 I 38 DQ ₁₂ I/O Data Bit 12 I 39 DQ ₁₃ I/O Data Bit 13 I 40 DQ ₁₄ I/O Data Bit 14 I 41 DQ ₁₅ I/O Data Bit 15 I	
37 DQ ₁₁ I/O Data Bit 11 1 38 DQ ₁₂ I/O Data Bit 12 1 39 DQ ₁₃ I/O Data Bit 13 1 40 DQ ₁₄ I/O Data Bit 14 1 41 DQ ₁₅ I/O Data Bit 15 1	
38 DQ ₁₂ I/O Data Bit 12 I/O 39 DQ ₁₃ I/O Data Bit 13 I/O 40 DQ ₁₄ I/O Data Bit 14 I/O 41 DQ ₁₅ I/O Data Bit 15 I/O	LOW
39 DQ ₁₃ I/O Data Bit 13 40 DQ ₁₄ I/O Data Bit 14 41 DQ ₁₅ I/O Data Bit 15	
40 DQ ₁₄ I/O Data Bit 14 41 DQ ₁₅ I/O Data Bit 15	
41 DQ ₁₅ I/O Data Bit 15	
42 CE ₂ # I Card Enable 2 I	
	LOW
43 VS ₁ O Voltage Sense 1 I	LOW
44 RFU Reserved	
45 RFU Reserved	
46 A ₁₇ I Address Bit 17	
47 A ₁₈ I Address Bit 18	
48 A ₁₉ I Address Bit 19	
49 A ₂₀ I Address Bit 20	
50 A ₂₁ I Address Bit 21	
51 V _{CC} Supply Voltage	
52 V _{PP2} Supply Voltage	

Active LOW

LOW

Pin	Signal	I/O	Function	Active		Pin	Signal	I/O	Function
53	A ₂₂	Ι	Address Bit 22			61	REG#	I	Attribute Memory Select
54	A ₂₃	Ι	Address Bit 23			62	BVD ₂	0	Battery Voltage Detect 2
55	A ₂₄	Ι	Address Bit 24			63	BVD ₁	0	Battery Voltage Detect 1
56	A ₂₅	Ι	Address Bit 25			64	DQ ₈	I/O	Data Bit 8
57	VS ₂	0	Voltage Sense 2	N.C.		65	DQ ₉	I/O	Data Bit 9
58	RST	Ι	Reset	HIGH		66	DQ ₁₀	I/O	Data Bit 10
59	WAIT#	0	Extend Bus Cycle	LOW		67	CD ₂ #	0	Card Detect 2
60	RFU		Reserved			68	GND		Ground

Table 1. Series 2+ Flash Memory Card Signals (Continued)

Table 2.	Series 2+ Flash	Memory Ca	ard Signal	Description
----------	-----------------	-----------	------------	-------------

Symbol	Туре	Name and Function		
A ₀ -A ₂₅	INPUT	ADDRESS INPUTS: Address A ₀ through A ₂₅ are address bus lines which enable direct addressing of up to 64 megabytes of memory on the card. Signal A ₀ is not used in word access mode. A ₂₅ is the most significant bit.		
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUT/OUTPUT: DQ_0 through DQ_{15} constitute the bi-directional data bus. DQ_{15} is the most significant bit.		
CE ₁ #,CE ₂ #	INPUT	CARD ENABLE 1 & 2: CE_1 # enables even bytes, CE_2 # enables odd bytes. Multiplexing A ₀ , CE_1 # and CE_2 # allows 8-bit hosts to access all data on D ₀ hrough D ₇ .		
OE#	INPUT	OUTPUT ENABLE: Active low signal gating read data from the memory card.		
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the memory card.		
RDY/BSY#	OUTPUT	READY/BUSY OUTPUT: Indicates status of internally timed erase or write activities. A high output indicates the memory card is ready to accept accesses. A low output indicates that a device in the memory card is busy with internally timed erase or write activities.		
CD ₁ #,CD ₂ #	OUTPUT	CARD DETECT 1 & 2: These signals provide for correct memory card insertion detection. They are positioned at opposite ends of the card to detect proper alignment. The signals are connected to ground internally on the memory card, and will be forced low whenever a card is placed in the socket. The host socket interface circuitry shall supply 10K or larger pull-up resistors on these signal pins.		
WP	OUTPUT	WRITE PROTECT: Write Protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the flash array.		

Symbol	Туре	Name and Function
V _{PP1} ,V _{PP2}		WRITE/ERASE POWER SUPPLY: (12 V nominal) for erasing memory array blocks or writing bytes in the array. These pins must be 12 V to perform and Write/Erase operation when not using the card's integrated V_{PP} generator. These signals may be disconnected but are required for ExCA TM standard compliance.
V _{CC}		CARD POWER SUPPLY: (3.3 V or 5 V nominal) for all internal circuitry.
GND		GROUND for all internal circuitry.
REG#	INPUT	REGISTER SELECT: Provides access to Series 2+ Flash Memory Card registers and Card Information Structure in the Attribute Memory Plane.
RST	INPUT	RESET: Active high signal for placing card in Power-On Default State.
WAIT#	OUTPUT	WAIT: (Extend Bus Cycle) This signal is driven high for compatibility.
BVD ₁ , BVD ₂	OUTPUT	BATTERY VOLTAGE DETECT: These signals are driven high to maintain SRAM card compatibility.
VS ₁ , VS ₂	OUTPUT	VOLTAGE SENSE: Notify the host socket of the card's V _{CC} requirements. VS ₁ grounded and VS ₂ open indicates a 3.3 V/5 V card has been inserted.
RFU		RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD; pin may be driven or left floating.

Table 2. Series 2+ Flash Memory Card Signal Description (Con	inued)
--	--------

3.2 Series 2+ Card Control Logic

The Card Control Logic, contained within two ASICS, handles the address decoding and data control for the Series 2+ Card. The component management registers are also contained within the Card Control Logic.

3.2.1 ADDRESS DECODE LOGIC

At the highest level, the Address Decode section determines when to select the Common Memory (REG# = V_{IH}) or Attribute Memory (REG# = V_{IL}) Planes. Within the Attribute Memory Plane (Figure 2), the address decode logic determines when to select the Card Information Structure (CIS) or Component Management Registers (CMR). The CIS contains tuple information and is located at even-byte addresses beginning with address 0000H (refer to Section 6.0). The CMRs are mapped at even byte locations beginning at address 4000H (refer to Section 3.3 for a detailed description).

3.2.2 DATA CONTROL

As shown in Table 3, data paths and directions are selected by the Data Control logic using REG#, A_0 , WE#, OE#, CE₁#, and CE₂# as logic inputs. The Data Control logic selects any of the PCMCIA wordwide, byte-wide, and odd-byte modes for either Reads or Writes to Common or Attribute Memory. All accesses to the Attribute Memory Plane must be made through D[7:0] no valid data can be written on the high byte. Reads of D[15:8] will yield FFH.

INL

ODD BYTE	EVEN BYTE	MEMORY ADDRESS
NOT	USED	1FFFFFH
		004200H
NOT USED	COMPONENT MANAGEMENT REGISTERS	004000H
NOT	USED	000100H
NOT USED	HARDWIRED PCMCIA CIS	000000H
		0491_2

	COMMON MEMORY PLANE										
Mode	REG#	CE ₂ #	CE ₁ #	A ₀	OE#	WE#	V _{PP2}	V _{PP1}	D[15:8]	D[7:0]	
Standby	Х	V _{IH}	V _{IH}	Х	Х	Х	V _{PPL}	V _{PPL}	High-Z	High-Z	
Byte-Read	V _{IH}	V _{IH}	V _{IL}	V _{IL}	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	High-Z	Even	
	V _{IH}	V _{IH}	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	High-Z	Odd	
Word-Read	V _{IH}	V _{IL}	V _{IL}	Х	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	Odd	Even	
Odd Byte-Read	V _{IH}	V _{IL}	V _{IH}	Х	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	Odd	High-Z	
Byte-Write	V _{IH}	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IL}	XXX	V _{PPH}	XXX	Even	
	V _{IH}	V _{IH}	V _{IL}	V _{IH}	V _{IH}	V _{IL}	V _{PPH}	XXX	XXX	Odd	
Word-Write	V _{IH}	V _{IL}	V _{IL}	Х	V _{IH}	V _{IL}	V _{PPH}	V _{PPH}	Odd	Even	
Odd Byte-Write	V _{IH}	V _{IL}	V _{IH}	Х	V _{IH}	V _{IL}	V _{PPH}	V _{PPL}	Odd	XXX	
			ATTRI	BUTE M	EMORY	PLANE					
Mode	REG#	CE ₂ #	CE ₁ #	A ₀	OE#	WE#	V _{PP2}	V _{PP1}	D _[15:8]	D _[7:0]	
Standby	Х	V _{IH}	V _{IH}	Х	Х	Х	V _{PPL}	V _{PPL}	High-Z	High-Z	
Byte-Read	V _{IL}	V _{IH}	V _{IL}	V _{IL}	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	High-Z	Even	
	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	High-Z	FFH	
Word-Read	V _{IL}	V _{IL}	V _{IL}	Х	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	FFH	Even	
Odd Byte-Read	V _{IL}	V _{IL}	V _{IH}	Х	V _{IL}	V _{IH}	V _{PPL}	V _{PPL}	FFH	High-Z	
Byte-Write	V _{IL}	V _{IH}	V _{IL}	V _{IL}	V _{IH}	V _{IL}	V _{PPL}	V _{PPL}	XXX	Even	
	V _{IL}	V _{IH}	V _{IL}	V _{IH}	V _{IH}	V _{IL}	V _{PPL}	V _{PPL}	XXX	XXX	
Word-Write	V _{IL}	V _{IL}	V _{IL}	Х	V _{IH}	V _{IL}	V _{PPL}	V _{PPL}	XXX	Even	
Odd Byte-Write	V _{IL}	V _{IL}	V _{IH}	Х	V _{IH}	V _{IL}	V _{PPL}	V _{PPL}	XXX	XXX	

Table 3. Data Access Mode Truth Table

NOTE:

When using the V_{PP} generator, V_{PP1} and V_{PP2} are "don't care."

3.3 Component Management Registers

The Component Management Registers (CMRs) are classified into two categories: those defined by PCMCIA Rev 2.0, and those included by Intel to enhance the interface between the host system and the card's flash memory array. The CMRs provide five control functions: ready-musy mode selection, voltage control, software write protection, card status and soft reset. For more details about the CMR functionality, consult Intel's *Series 2+ Flash Memory Card User's Manual* (297373).

3.4 SmartPower

The SmartPower circuitry generates and monitors the card's programming voltages. When a host system does not provide a valid V_{PP} supply, the card's integrated generator can be switched on via the voltage control register. The SmartPower circuitry also detects the host system's V_{CC} level (3.3 V or 5.0 V) and configures the card's flash memory devices, accordingly driving the 3/5# pin to the memory array to the appropriate value.

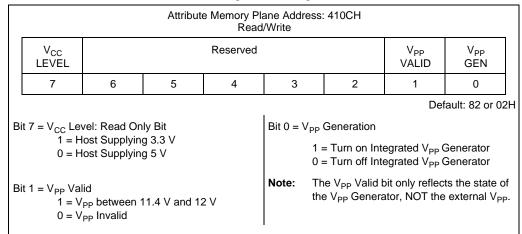
The SmartPower circuitry is enabled by writing a "1" to Bit 0 of the voltage control register.

Table 4. Configuration Option Register - PCMCIA (Soft Reset Register)

	Attribute Memory Plane Address: 4000H Read/Write										
	SRESET	LevIREQ		Configuration Index							
	7	6 5 4 3 2 1 0									
Bit 7 = Soft Reset Bits 5-0 = Configuration Index 1 = Reset State May Be Written with Values 1-4, Refer to Index in 0 = End Reset Cycle CIS Card Configuration Table Tuple.											
	it 6 = Level F Priven Low	Request									

Table 5. Card Configuration and Status Register - PCMCIA (Global Power-Down Register)

	Attribute Memory Plane Address: 4002H Read/Write											
Reserved PWRDWN Reserved												
	7 6 5 4 3 2 1 0											
В			Reset Powe	r-Down				Default: 00H				


Table 6. Card Status Register - Intel

	Attribute Memory Plane Address: 4100H Read Only											
	Rese	erved	SRESET	CMWP	PWRDWN CISWP		WP	RDY/BSY#				
	7	7 6		4	3	2	1	0				
	Default: 01H or 03H											
Bi	t 5 = Soft Re 1 = R	set eset State			Bit 2 = Common Memory CIS Write Protect 1 = Write Protected							
B	t 4 = Commo 1 = W	on Memory W /rite Protecte			Bit 1 = Write Protect Switch 1 = Write Protected							
Bit 3 = Power-Down 1 = Power-Down					Bit 0 = Card Ready/Busy# 1 = Ready							

Table 7. Write Protection Register - Intel

	Attribute Memory Plane Address: 4104H Read/Write										
			Reserved			BLKEN	CMWP	CISWP			
	7	6	5	4	3	2	1	0			
								Default: 04H			
	B 0 = A it 1 = Commo 1 = C in 0 = W	nable Indepe lock Locking Il Blocks Unli on Memory W common Men Write Protect	endent 28F01 ocked /rite Protect nory Minus th ct Status	e CMCIS	1 =	= Common N Write Prote = Write Prote	ct According	٦			

Table 8. Voltage Control Register - Intel

Table 9. Ready/Busy Mode Register - Intel

	Attribute Memory Plane Address: 4140H Read/Write									
			RACK	MODE						
	7 6 5 4 3 2 1 0									
								Default: 00	ЭН	
В	Bit 1 = Ready Acknowledge Bit 0 = RDY/BSY# Mode 0 = Clear RDY/BSY# 1 = High-Performance Mode 0 = PCMCIA Level Mode									
									13	

4.0 DEVICE COMMAND SET

The 28F016SA/DD28F032SA-based Series 2+ Command Set increases functionality over earlier 28F008SA-based designs while maintaining backwards compatibility. The extended command set incorporates many new features to improve programmability and write performance such as: page buffered writing, individual block locking, multiple RDY/BSY# configurations and device level queuing capabilities. The following pages list the Series 2+ command set and Bus Cycle Operations overview.

Codes (H)	Series 2 Compatible Mode
00H	Invalid/Reserved
10H	Alternate Data Write
20H	Single Block Erase
40H	Data Write
50H	Clear Status Registers
70H	Read CSR
90H	Read ID Codes
B0H	Erase Suspend
D0H	Confirm/Resume
FFH	Read Flash Array

Series 2+ Command Set

Codes (H)	Series 2+ Performance Enhancement
0CH	Page Buffer Write to Flash
71H	Read GSR or BSRs
72H	Page Buffer Swap
74H	Single Load to Page Buffer
75H	Read Page Buffer
77H	Lock Block
80H	Abort
96H,01H	RY/BY# Level Mode Enable
96H,02H	RY/BY# Pulse-On-Write
96H,03H	RY/BY# Pulse-On Erase
96H,04H	RY/BY# Disable
97H	Upload Status Bits
99H	Upload Device Information
A7H	Erase All Unlocked Blocks
E0H	Sequential Load to Page Buffer
F0H	Sleep

		First Bu	ıs Cycle		Second Bus Cycle				
Command	R/W	R/W Addr Data		R/W Addr		Data			
			Byte	Word			Byte	Word	
Read Array	W	DA	FFH	FFFFH	R	DA	AD	AD	
Intelligent Identifier	W	DA	90H	9090H	R	IA	ID	ID	
Read CSR (See 1)	W	DA	70H	7070H	R	DA	CSRD	CSRD	
Clear Status Register (See 2)	W	DA	50H	5050H					
Word/Byte Write §	W	WA	40H	4040H	W	WA	WD	WD	
Word/Byte Write (Alternate) §	W	WA	10H	1010H	W	WA	WD	WD	
Block Erase/Confirm §	W	BA	20H	2020H	W	BA	D0H	D0D0H	
Erase Suspend/Resume	W	DA	B0H	B0B0H	W	DA	D0H	D0D0H	

Table 10. 28F008SA-Compatible Mode Command Bus Definitions

ADDRESSES:

DA

ΒA

IA

WA

DATA:

Device Address	AD	Array Data
Block Address	CSRD	CSR Data
Identifier Address	ID	Identifier Data
Write Address	WD	Write Data
	-	

§ = Queueable Commands

NOTES:

1. The CSR is automatically available after the device enters data write, erase or suspend operations.

2. Clears CSR.3, CSR.4 and CSR.5. Also clears GSR.5 and all BSR.5 and BSR.2 bits.

			First B	us Cyc	le	5	Second	Bus Cy	cle		Third B	us Cycl	e
Command	Notes	Oper	Addr	C	Data	Oper	Addr	C	Data	Oper	Addr	Da	ata
				Byte	Word			Byte	Word			Byte	Word
Read Page Buffer		W	DA	75H	7575H	R	PA	PD	PDPD				
Page Buffer Swap	6	W	DA	72H	7272H								
Single Load to Page Buffer		W	DA	74H	7474H	W	PA	PD	PDPD				
Sequential Load to Page Buffer	4,5	W	DA	E0H	E0E0H	W	DA	E	SCH	W	DA	B	СН
Page Buffer Write to Flash Array §	3,4,5	W	DA	0CH	0C0CH	W	A ₀	BC	:(L,H)	W	WA	BC((H,L)
RY/BY# Pulse- On-Erase §	7	W	DA	96H	9696H	W	DA	D0H	D0D0H				
RY/BY# Pulse- On-Write §	7	W	DA	96H	9696H	W	DA	D1H	D1D1H				
RY/BY# Enable to Level-Mode §	7	W	DA	96H	9696H	W	DA	D2H	D2D2H				
RY/BY# Disable §	7	W	DA	96H	9696H	W	DA	D3H	D3D3H				
Lock Block/ Confirm §		W	DA	77H	7777H	W	BA	D0H	D0D0H				
Upload Status Bits/ Confirm §	2	W	DA	97H	9797H	W	DA	D0H	D0D0H				
Read Extended Status Registers	1	W	DA	71H	7171H	R	RA	GSRI	GSRD/BSRD				
Erase All Unlocked Blocks/ Confirm §		W	DA	A7H	A7A7H	W	DA	D0H	D0D0H				
Sleep		W	DA	F0H	F0F0H								
Abort		W	DA	80H	8080H								
Upload Device Information		W	DA	99H	9999H	W	DA	D0H	D0D0H				

Table 11. 28F016SA-Super-Set Mode Performance Enhancement Command Bus Definitions

Word Count (Low, High)

Byte Count (Low, High)

Write Data (Low, High)

DATA COUNTS

WC(L.H)

BC(L,H)

WD(L,H)V

ADDRESSE	S	DATA
DA	Device Address	AD
BA	Block Address	CSRD
IA	Identifier Address	G/BSRD
PA	Page Buffer Address	ID
RA	Extended Register Address	WD
WA	Write Address	PD
Х	Don't Care	

§ = Queueable Commands

NOTES:

- 1. RA can be the GSR address or any BSR address.
- Upon device power-up, all BSR lock-bits are locked. The Lock Status Upload command must be written to reflect the 2. actual lock-bit status.
- A₀ is automatically complemented to load the second byte of data. 3.
- BCH/WCH must be at 00H for this product because of the 256-byte Page Buffer size and to avoid writing the Page Buffer 4. contents into more than one 256-byte segment within an array block. They are simply shown for Page Buffer expandability.

Write Address

GSR/BSR Data

Identifier Data Write Data Page Buffer Data

CSR Data

- 5. PA and PD (whose count is given in cycles 2 and 3) are supplied starting in the fourth cycle (not shown).
- This command allows the user to swap between available page buffers (0 or 1). 6.
- 7. These commands reconfigure RY/BY# output to one of two pulse modes, or they enable and disable the RY/BY# function.

DEVICE STATUS REGISTER 5.0

Each 28F016SA has three types of status registers: the Compatible Status Register (CSR), the Global Status Register (GSR) and the Block Status Register (BSR). The CSR is identical to the 28F008SA status register. The GSR contains queue and page buffer information about each device. Each block within the device has a BSR assigned to it. The BSR contains the block locking status and other information specific to the block being addressed.

Table 12. Compatible Status Register

				Read Onl	y Register			
	WSMS	ESS	ES	DWS	VPPS	Reserved		
7 6 5 4 3 2						2	1	0
Default: 80						Default: 80H		
CSR.7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy CSR.6 = ERASE-SUSPEND STATUS (ESS) 1 = Erase Suspended 0 = Erase In Progress/Completed				1 = 0 = CSR.3 = V _P 1 =	ATA-WRITE S = Error in Dat = Data Write _{PP} STATUS (\ = V _{PP} Low De = V _{PP} OK	ta Write Successful /PPS)	,	
С		SE STATUS rror In Block uccessful Blo	Erasure					

Table 13. Global Status Register

WSMS	OSS	DOS	DSS	QS	PBAS	PBS	PBSS
7	6	5	4	3	2	1	0
GSR.7 = W 1 = R 0 = B		MACHINE ST	TATUS	NOTES: [1] RY/BY# output or WSMS bit must be checked to determine completion of an operation (block lock, erase suspend, any RY/BY# reconfig- uration, Upload Status Bits, block erase or data program) before the appropriate Status bit (OSS or DOS) is checked for success.			
1 = O	PERATION S peration Susp peration in Pro	ended					
1 = O	EVICE OPER peration Unsu peration Succ	ccessful					
1 = D	EVICE SLEEF evice in Sleep evice Not in S						
	<u>4</u> Operation Sud unning	ccessful or Cu	urrently	If operation currently running, then $GSR.7 = 0$.			
0 1 = SI	Device in Slee eep Operation Uni		ending	If device pending sleep, then GSR.7 = 0.			
	Operation Un		Aborted	Operation a command.	aborted: Unsu	ccessful due	to Abort
1 = Q	UEUE STATL ueue Full ueue Availabl	-					
GSR.2 = PAGE BUFFER AVAILABLE STATUS 1 = One or Two Page Buffers Available 0 = No Page Buffer Available				The device	contains two	Page Buffers	
GSR.1 = PAGE BUFFER STATUS 1 = Selected Page Buffer Ready 0 = Selected Page Buffer Busy				Selected Pa operation.	age Buffer is o	currently busy	with WSN
1 = Pa	AGE BUFFER age Buffer 1 S age Buffer 0 S	elected	ATUS				

1. When multiple operations are queued, checking BSR.7 only provides indication of completion for that particular block. GSR.7 provides indication when all queued operations are completed.

Table 14. Block Status Register

									.
	BS	BLS BOS BOAS			QS	VPPS	Reserved		
	7	6	5	4	3	2	1	0	
								Default: 80)H
в	BSR.7 = BLOCK STATUS (BS) 1 = Ready 0 = Busy BSR.6 = BLOCK-LOCK STATUS (BLS) 1 = Block Unlocked for Write/Erase 0 = Block Locked for Write/Erase BSR.5 = BLOCK OPERATION STATUS (BOS) 1 = Operation Unsuccessful 0 = Operation Successful or Currently Running				(BOAS) 1 = 0 = BSR.3 = QL 1 = 0 = BSR.2 = V _P 1 =	OCK OPERA = Operation A = Operation N JEUE STATL = Queue Full = Queue Ava P STATUS (V = V _{PP} Low De = V _{PP} OK	Aborted Not Aborted JS (QS) ilable /PPS)		

6.0 PCMCIA CARD INFORMATION STRUCTURE

The Card Information Structure (CIS) begins at address 00000000H of the card's Attribute Memory Plane. It contains a variable length chain of data blocks (tuples) that conform to a basic format (Table 15). The CIS of the Series 2+ Flash Memory Card is found in Table 16.

Table 15. PCMCIA Tuple Format

Bytes	Data
0	Tuple Code: CISTPL_xxx. The tuple code 0FFH indicates no more tuples in the list.
1	Tuple Link: TPL_LINK. Link to the next tuple in the list. This can be viewed as the number of additional bytes in tuple, excluding this byte. A link field of zero indicates an empty tuple body. A link field containing 0FFH indicates the last tuple in the list.
2-n	Bytes specific to this tuple.

intel®

Address	Value	Description
00h	01H	CISTPL_DEVICE
02h	04H	TPL_LINK
04h	57H	FLASH
06h	22H	150 ns
	32H	250 ns
		CARD SIZE
08h	0EH	4 MB
	1EH	8 MB
	4EH	20 MB
	9EH	40 MB
0AH	FFH	END OF DEVICE
0CH	1CH	CISTPL_DEVICE_OC
0EH	05H	TPL_LINK
10H	02H	OTHER CONDITIONS - 3 V_{CC}
12H	57H	FLASH
14H	32H	250 ns
		CARD SIZE
16H	0EH	4 MB
	1EH	8 MB
	4EH	20 MB
	9EH	40 MB
18H	FFH	END OF DEVICE
1AH	17H	CISTPL_DEVICE_A
1CH	04H	TPL_LINK
1EH	1FH	ROM
20H	22H	150 ns
22H	01H	2 Kb
24H	FFH	END OF DEVICE
26H	1DH	CISTPL_DEVICE_OA
28H	05H	TPL_LINK
2AH	02H	OTHER CONDITIONS - 3 V _{CC}
2CH	17H	ROM
2EH	32H	250 ns
30H	01H	2 Kb
32H	FFH	END OF DEVICE
34H	18H	CISTPL JEDEC_C
36H	02H	TPL_LINK
38H	89H	INTEL J-ID

Table 16.	Tuples	for	Series	2+	Card	
-----------	--------	-----	--------	----	------	--

Address	Value	Description
3AH	A0H	28F016 J-ID
3CH	00H	NULL CONTROL TUPLE
3EH	15H	CISTPL VERS 1
40H	39H	TPL_LINK
42H	04H	TPLLV1_MAJOR
44H	01H	TPLLV1_MINOR
		TPLLV1_INFO
46H	49H	I
48H	6EH	n
4AH	74H	t
4CH	65H	е
4EH	6CH	ļ
50H	00H	END TEXT
52H	53H	S
54H	32H	2
56H	45H	E
58H	34H	4 MB
	38H	8 MB
	32H	20 MB
	34H	40 MB
5AH	20H	4 MB
	20H	8 MB
	30H	20 MB
	30H	40 MB
5CH	53H	S
	20H	SPACE
5EH	57H	W
	20H	SPACE
60H	00H	ENDTEXT
62H	43H	С
64H	4FH	0
66H	50H	Р
68H	59H	Y
6AH	52H	R
6CH	49H	l
6EH	47H	G
70H	48H	Н
72H	54H	Т

	Table 16. Tuples for Series 2+ Card (Continued)					
Address	Value	Description	Address	Value	Description	
74H	20H	SPACE	BEH	40H	TPCC_RADR	
76H	49H	I	C0H	03H	TPCC_RMSK	
78H	6EH	n	C2H	00H	NULL CONTROL TUPLE	
7AH	74H	t	C4H	1BH	CISTPL_CFTABLE_ENTRY	
7CH	65H	e	C6H	08H	TPL_LINK	
7EH	6CH	I	C8H	01H	TPCE_INDEX (01H)	
80H	20H	SPACE	CAH	01H	TPCE_FS (V _{CC} ONLY)	
82H	43H	С			TPCE_PD	
84H	4FH	0	ССН	79H	V _{CC} PARAMETER	
86H	52H	R			SELECTION BYTE	
88H	50H	Р	CEH	55H	V _{CC} NOMINAL VOLTAGE	
8AH	4FH	0			$5 V \pm 5\%$	
8CH	52H	R	D0H	53H	I _{CC} STATIC 500 μΑ	
8EH	41H	A	D2H	1EH	I _{CC} AVERAGE 150 mA	
90H	54H	Т	D4H	1EH	I _{CC} PEAK 150 mA	
92H	49H	I	D6H	1BH	I _{CC} PWRDWN 200 μA	
94H	4FH	0	D8H	1BH	CISTPL_CFTABLE_ENTRY	
96H	4EH	Ν	DAH	0FH	TPL_LINK	
98H	20H	SPACE	DCH	02H	TPCE_INDEX (02H)	
9AH	31H	1	DEH	02H	TPCE_FS (V_{CC} AND V_{PP})	
9CH	39H	9			TPCE_PD	
9EH	39H	9	E0H	79H	V _{CC} PARAMETER	
A0H	33H	3			SELECTION BYTE	
A2H	20H	SPACE	E2H	55H	V _{CC} NOMINAL VOLTAGE	
A4H	47H	G			$5 V \pm 5\%$	
A6H	4CH	L	E4H	2BH	I _{CC} STATIC 250 μΑ	
A8H	41H	A	E6H	06H	I _{CC} AVERAGE 100 mA	
AAH	44H	D	E8H	06H	I _{CC} PEAK 100 mA	
ACH	45H	E	EAH	52H	I _{CC} PWRDWN 50 μA	
AEH	4BH	К			TPCE_PD	
B0H	00H	END TEXT	ECH	79H	V _{PP} PARAMETER	
B2H	FFH	END OF LIST			SELECTION BYTE	
B4H	1AH	CISTPL_CONF	EEH	8EH	12.0 V \pm 5%	
B6H	05H	TUPL_LINK	F0H	7DH	NC OK ON STANDBY & PWD	
B8H	01H	TPCC_SZ	F2H	53H	I _{PP} STATIC 500 μA	
BAH	04H	TPCC_LAST	F4H	25H	I _{PP} AVERAGE 20 mA	
BCH	00H	TPCC_RADR	F6H	25H	I _{PP} PEAK 20 mA	

Table 16. Tuples for Series 2+ Card (Continued)

int_{el}.

-		
Address	Value	Description
F8H	52H	IPP PWRDWN 50 µA
FAH	1BH	CISTPL_CFTABLE_ENTRY
FCH	09H	TPL_LINK
FEH	03H	TPCE_INDEX (03H)
100H	01H	TPCE_FS (V _{CC} ONLY)
		TPCE_PD
102H	79H	V _{CC} PARAMETER
		SELECTION BYTE
104H	B5H	$V_{CC} = 3.3 V$
106H	1EH	EXTENSION BYTE
108H	04H	I _{CC} STATIC 1 mA
10AH	1EH	I _{CC} AVERAGE 150 mA
10CH	1EH	I _{CC} PEAK 150 mA
10EH	53H	I _{CC} PWRDWN 500 μA
110H	1BH	CISTPL_CFTABLE_ENTRY
112H	10H	TPL_LINK
114H	04H	TPCE_INDEX (04H)
116H	02H	TPCE_FS (V_{CC} AND V_{PP})
		TPCE_PD
118H	79H	V _{CC} PARAMETER
		SELECTION BYTE
11AH	B5H	$V_{CC} = 3.3 V$
11CH	1EH	EXTENSION BYTE
11EH	2BH	I _{CC} STATIC 250 μA
120H	06H	I _{CC} AVERAGE 100 mA
122H	06H	I _{CC} PEAK 100 mA
124H	52H	I _{CC} PWRDWN 50 μA
		TPCE_PD
126H	79H	V _{PP} PARAMETER
		SELECTION BYTE
128H	8EH	12.0 V =/- 5%
12AH	7DH	NC OK ON STANDBY & PWD
12CH	53H	I _{PP} STATIC 500 μA
12EH	25H	I _{PP} AVERAGE 20 mA
130H	25H	I _{PP} PEAK 20 mA
132H	1BH	I _{PP} PWRDWN 150 μA
134H	00H	NULL CONTROL TUPLE

Table 16. T	uples for	Series 2+	Card (C	Continued)
-------------	-----------	-----------	---------	------------

Ac	ddress		
		Value	Description
	136H	00H	NULL CONTROL TUPLE
	138H	1EH	CISTPL DEVICEGEO
-	13AH	06H	TPL_LINK
-	I3CH	02H	DGTPL_BUS
-	13EH	11H	DGTPL_EBS
	140H	01H	DGTPL_RBS
	142H	01H	DGTPL_WBS
	144H	01H	DGTPL_PART = 1
	146H	01H	FLASH DEVICE
			INTERLEAVE
	148H	20H	CISTPL_MANFID
-	14AH	04H	TPL_LINK (04H)
			TPLMID_MANF
-	14CH	89H	LSB
-	14EH	00H	MSB
	150H	12H	4 MB - 150 ns
		22H	8 MB - 150 ns
		42H	20 MB - 150 ns
		62H	40 MB - 150 ns
	152H	84H	TPLMID_CARD MSB
	154H	21H	CISTPL_FUNCID
	156H	02H	TPL_LINK
	158H	01H	TPLFID_FUNCTION
			(MEMORY)
	15AH	00H	TPLFID_SYSINIT (NONE)
	I5CH	FFH	CISTPL_END
1		00H	INVALID ADDRESS
			(156H-1FEH)

7.0 SYSTEM DESIGN CONSIDERATIONS

7.1 Power Supply Decoupling

Flash memory power-switching characteristics require careful device decoupling. System designers are interested in three supply current issues: standby, active and transient current peaks which are produced by rising and falling edges of CE_1 # and CE_2 #. The capacitive and inductive loads on the card and internal flash memory device pairs determine the magnitudes of these peaks.

Three-line control and proper decoupling capacitor selection suppress transient voltage peaks. Series 2+ cards contain on-card ceramic decoupling capacitors connected between V_{CC} and GND, and between V_{PP1}/V_{PP2} and GND.

The card connector should also have a 4.7 μF electrolytic capacitor between V_{CC} and GND, as well as between V_{PP1}/V_{PP2} and GND. The bulk capacitors overcome voltage slumps caused by printed-circuit-board trace inductance, and supply charge to the smaller capacitors as needed.

7.2 Power-Up/Down Protection

The PCMCIA/JEIDA-specified socket properly sequences the power supplies to the flash memory card via shorter and longer pins. This design assures that hot insertion and removal will not result in card damage or data loss.

Each device in the memory card is designed to offer protection against accidental erasure or writing, caused by spurious system-level signals that may exist during power transitions. The card will power-up into the read state.

A system designer must guard against active writes for V_{CC} voltages above V_{LKO} when V_{PP} is active. Since both WE# and CE₁# must be low for a command write, driving either to V_{IH} will inhibit writes. With its control register architecture, alteration of device contents only occurs after successful completion of the two-step command sequences. While these precautions are sufficient for most applications, an alternative approach would allow V_{CC} to reach its steady state value before raising V_{PP1}/V_{PP2} above V_{CC} + 2.0 V. In addition, upon powering down, V_{PP1}/V_{PP2} should be below V_{CC} + 2.0 V before lowering V_{CC}.

NOTE

The Integrated V_{PP} generator defaults to the power off condition after reset and system power-up. The V_{PP} Generation circuitry must be enabled for the memory card to operate in 3.3 V-only or 5.0 V-only mode.

7.3 Hot Insertion/Removal

The capability to remove or insert PC cards while the system is powered on (i.e., hot insertion/removal) requires careful design approaches on the system and card levels. To design for this capability, consider card overvoltage stress, system power fluxuations and control line stability.

8.0 ELECTRICAL SPECIFICATIONS

8.1 Absolute Maximum Ratings*

Operating Temperature

During Read0 °C to +60 °C ⁽¹⁾ During Write0 °C to +60 °C
Storage Temperature30 °C to +70 °C(2)
Voltage on Any Pin with Respect to Ground –2.0 V to V _{CC} +2.0 V ⁽²⁾
V _{PP1} /V _{PP2} Supply Voltage with Respect to Ground2.0 V to V _{CC} +14.0 V ^(2,3)
V_{CC} Supply Voltage with Respect to Ground–0.5 V to +7.0 V

NOTICE: This is a production datasheet. The specifications are subject to change without notice.

* WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may effect device reliability.

NOTES:

- 1. Operating temperature is for commercial product defined by this specification.
- 2. Minimum DC input voltage is -0.5 V. During transitions, inputs may undershoot to 2.0 V for periods less than 20 ns. Maximum DC voltage on output pins is V_{CC} +0.5 V, which may overshoot to V_{CC} + 2.0 V for periods less than 20 ns.
- 3. Maximum DC input voltage on V_{PP1}/V_{PP2} may overshoot to +14.0 V for periods less than 20 ns.
- 4. V_{PP} generator turned "on" for 3.3 V or 5.0 V only operation.

8.2 Operating Conditions

Temperature and V_{CC} Operating Conditions

Symbol	Parameter	Min	Max	Units
$\rm V_{CC}$ at 3.3 V, 12 V $\rm V_{PP}$	V_{CC} Supply Voltage (±0.3 V)	3.0	3.6	V
V_{CC} at 3.3 V, $V_{PP}Gen^{(4)}$	V_{CC} Supply Voltage (±0.15 V)	3.15	3.45	V
V _{CC} at 5.0 V	V_{CC} Supply Voltage (±0.25 V)	4.75	5.25	V

8.3 Capacitance⁽¹⁾

 T_A = +25 °C, f = 1 MHz

Symbol	Pins	Тур	Мах	Unit
C _{IN}	A ₀	15	30	pF
C _{IN}	Address/Control	10	20	pF
C _{IN}	V _{CC} , V _{PP}	2	2	pF
C _{OUT}	Output	10	20	pF

8.4 DC Characteristics

Symbol	Parameter	Notes	Min	Мах	Units	Test Conditions
ILI	Input Leakage Current	1,3		±20	μΑ	$V_{CC} = V_{CC} Max$
						$V_{IN} = V_{CC} \text{ or } GND$
I _{LO}	Output Leakage Current	1		±20	μA	$V_{CC} = V_{CC} Max$
						$V_{OUT}=V_{CC}$ or GND
V _{IL5}	Input Low Voltage	1	0	0.8	V	$V_{CC} = 5 V$
V _{IL3.3}				0.7		$V_{CC} = 3.3 V$
V _{IH5}	Input High Voltage	1	2.4	V _{CC} + 0.5	V	$V_{CC} = 5 V$
V _{IH3.3}			2.2	V _{CC} + 0.3		V _{CC} = 3.3 V
V _{OL}	Output Low Voltage	1		0.4	V	I _{OL} = 3.2 mA
V _{OH}	Output High Voltage	1	$V_{CC} - 0.4$	V _{CC}	V	I _{OH} = -2.0 mA
V _{PPL}	V _{PP} during Read Only Operations	1,2	0	6.5	V	
V _{PPH}	V _{PP} during Read/Write Operations	1	11.4	12.6	V	
V _{LKO}	V _{CC} Erase/Write Lock Voltage	1	2.0		V	

NOTES:

1. Values are the same for byte and word wide modes for all card densities.

2. Block erases/data writes are inhibited when V_{PP} and V_{PPL} are not guaranteed in the range between V_{PPH} and V_{PPL}.

3. Exceptions: With V_{IN} = GND, the leakage current on CE₁#, CE₂#, REG#, OE#, and WE# will be < 500 μ A due to internal pull-up resistors. With V_{IN} = V_{CC}, RST leakage current will be < 500 μ A due to internal pull-down resistors. With V_{IN} = V_{CC}, A₂₁-A₂₅ leakage current will be <100 μ A due to internal pull down resistors.

8.5 DC Characteristics—CMOS Interfacing

$V_{CC} = 3.3 V$

Sym	Parameter	Density	Notes	x8 N	lode	x16 I	Mode	Unit	Test Conditions
		(Mbytes)		Тур	Max	Тур	Max		
I _{CCR}	V _{CC} Read Current	4, 8, 20, 40	1, 2, 3		75		100	mA	$V_{CC} = V_{CC} Max$ $t_{CYCLE} = 250 ns$
I _{CCW}	V _{CC} Write Current	4, 8, 20, 40	1, 2, 3, 4		40		50	mA	V _{PP} Gen = OFF during Data Write
			1, 2, 3, 5		100		175	mA	V _{PP} Gen = ON during Data Write
I_{CCE}	V _{CC} Erase Current	4, 8, 20, 40	1, 2, 3, 4		40		50	mA	V_{PP} Gen = OFF
			1, 2, 3, 5		80		150	mA	V_{PP} Gen = ON
I _{CCSL}	V _{CC} Sleep Current	4	1, 3, 4, 6	25	75	25	75	μΑ	$V_{CC} = V_{CC} Max$
		8		25	95	25	95		Control Signals =
		20		35	155	35	155		V _{CC}
		40		45	255	45	255		
I _{CCS}	V _{CC} Standby	4	1, 2, 3,	75	115	110	210	μA	$V_{CC} = V_{CC} Max$
	Current	8	4, 6	80	125	115	230		Control Signals =
		20		85	155	120	250		V _{CC}
		40		100	200	150	300		
IPPW	VPP Write Current	4, 8, 20, 40	1, 2, 3, 4	10	15	20	30	mA	Data Write in Progress V _{PP} = V _{PPH}
IPPE	V _{PP} Erase Current	4, 8, 20, 40	1, 2, 3, 4	6	12	12	22	mA	Block (Pair) Erase in Progress V _{PP} = V _{PPH}
I _{PPSL}	V _{PP} Sleep Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$
I _{PPS}	V _{PP} Standby/ Read Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$

intel

CMOS Test Conditions: V_{IL} = GND \pm 0.2 V V_{IH} = V_{CC} \pm 0.2 V

NOTES:

- 1. All currents are RMS values unless otherwise specified. Typical V_{CC} = 5 V, V_{PP} = 12 V, T = 25 °C.
- 2. Two devices active in word mode, one device active in byte mode.
- 3. Devices not addressed are in sleep mode.
- 4. V_{PP} Generation Circuitry turned off.
- 5. V_{PP} Generation Circuitry turned on.
- 6. Control Signals, CE1#, CE2#, OE#, WE#, REG#.

8.6 DC Characteristics—CMOS Interfacing

 $V_{CC} = 5.0 V$

Sym	Parameter	Density	Notes	x8 N	lode	x16 l	Mode	Unit	Test Conditions
		(Mbytes)		Тур	Max	Тур	Max		
I _{CCR}	V _{CC} Read Current	4, 8, 20, 40	1, 2, 3		140		160	mA	$V_{CC} = V_{CC} Max$ $t_{CYCLE} = 250 ns$
Iccw	V _{CC} Write Current	4, 8, 20, 40	1, 2, 3, 4		85		120	mA	V _{PP} Gen = OFF during Data Write
			1, 2, 3, 5		120		150	mA	V _{PP} Gen = ON during Data Write
ICCE	V _{CC} Erase Current	4, 8, 20, 40	1, 2, 3, 4		75		100	mA	V_{PP} Gen = OFF
			1, 2, 3, 5		100	75	150	mA	V_{PP} Gen = ON
I _{CCSL}	V _{CC} Sleep Current	4	1, 3, 4, 6	25	75	25	75	μA	$V_{CC} = V_{CC} Max$
		8		25	95	25	95		Control Signals =
		20		35	155	35	155		V _{cc}
		40		45	255	45	255		
I _{CCS}	V _{CC} Standby	4	1, 2, 3,	75	115	110	210	μA	$V_{CC} = V_{CC}$ Max
	Current	8	4, 6	80	125	115	230		Control Signals =
		20		85	155	120	250		V _{CC}
		40		100	200	150	300		
IPPW	VPP Write Current	4, 8, 20, 40	1, 2, 3, 4	6	12	14	24	mA	Data Write in Progress V _{PP} = V _{PPH}
IPPE	V _{PP} Erase Current	4, 8, 20, 40	1, 2, 3, 4	6	12	12	22	mA	Block (Pair) Erase in Progress V _{PP} = V _{PPH}
IPPSL	V _{PP} Sleep Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$
I _{PPS}	V _{PP} Standby/ Read Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{\text{PP}} \leq V_{\text{CC}}$

CMOS Test Conditions: V_{IL} = GND \pm 0.2 V, V_{IH} = V_{CC} \pm 0.2 V

NOTES:

- 1. All currents are RMS values unless otherwise specified. Typical V_{CC} = 5 V, V_{PP} = 12 V, T = 25 °C.
- 2. Two devices active in word mode, one device active in byte mode.
- 3. Devices not addressed are in sleep mode.
- 4. V_{PP} Generation Circuitry turned off.
- 5. V_{PP} Generation Circuitry turned on.
- 6. Control Signals, CE_1 #, CE_2 #, OE#, WE#, REG#.

8.7 DC Characteristics—TTL Interfacing

$V_{CC} = 3.3 V$

Sym	Parameter	Density	Notes	x8 N	lode	x16 l	Mode	Unit	Test Conditions
		(Mbytes)		Тур	Max	Тур	Max		
I _{CCR}	V _{CC} Read Current	4, 8, 20, 40	1, 2, 3		75		90	mA	$V_{CC} = V_{CC} Max$ $t_{CYCLE} = 250 ns$
Iccw	V _{CC} Write Current	4, 8, 20, 40	1, 2, 3, 4		85		100	mA	V _{PP} Gen = OFF during Data Write
			1, 2, 3, 5		150		225	mA	V _{PP} Gen = ON during Data Write
ICCE	V _{CC} Erase Current	4, 8, 20, 40	1, 2, 3, 4		85		100	mA	V_{PP} Gen = OFF
			1, 2, 3, 5		125		180	mA	V_{PP} Gen = ON
I _{CCSL}	V _{CC} Sleep Current	4, 8, 20, 40	1, 3, 4, 6		70		70	mA	$V_{CC} = V_{CC} Max$ Control Signals = V_{IH}
I _{CCS}	V _{CC} Standby Current	4, 8, 20, 40	1, 2, 3, 4, 6		70		70	mA	$V_{CC} = V_{CC} Max$ Control Signals = V_{IH}
I _{PPW}	V _{PP} Write Current	4, 8, 20, 40	1, 2, 3, 4	10	15	20	30	mA	Data Write in Progress V _{PP} = V _{PPH}
I _{PPE}	V _{PP} Erase Current	4, 8, 20, 40	1, 2, 3, 4	5	10	10	20	mA	Block (Pair) Erase in Progress V _{PP} = V _{PPH}
I _{PPSL}	V _{PP} Sleep Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \le V_{CC}$
I _{PPS}	V _{PP} Standby/ Read Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$

intal

TTL Test Conditions: $V_{\rm IL}$ = 0.7 V, $V_{\rm IH}$ = 2.2 V

NOTES:

- 1. All currents are RMS values unless otherwise specified. Typical V_{CC} = 5 V, V_{PP} = 12 V, T = 25 °C.
- 2. Two devices active in word mode, one device active in byte mode.
- 3. Devices not addressed are in sleep mode.
- 4. V_{PP} Generation Circuitry turned off.
- 5. V_{PP} Generation Circuitry turned on.
- 6. Control Signals, CE₁#, CE₂#, OE#, WE#, REG#.

8.8 DC Characteristics—TTL Interfacing

$V_{CC} = 5.0 V$

intel

Sym	Parameter	Density	Notes	x8 N	lode	x16 I	Node	Unit	Test Conditions
		(Mbytes)		Тур	Max	Тур	Max		
I _{CCR}	V _{CC} Read Current	4, 8, 20, 40	1, 2, 3		170		190	mA	$V_{CC} = V_{CC} Max$ $t_{CYCLE} = 150 ns$
Iccw	V _{CC} Write Current	4, 8, 20, 40	1, 2, 3, 4		135		170	mA	V _{PP} Gen = OFF during Data Write
			1, 2, 3, 5		170		250	mA	V _{PP} Gen = ON during Data Write
ICCE	V _{CC} Erase Current	4, 8, 20, 40	1, 2, 3, 4		125		150	mA	V_{PP} Gen = OFF
			1, 2, 3, 5		150		200	mA	V_{PP} Gen = ON
I _{CCSL}	V _{CC} Sleep Current	4, 8, 20, 40	1, 3, 4, 6		100		100	mA	$V_{CC} = V_{CC} Max$ Control Signals = V_{IH}
I _{CCS}	V _{CC} Standby Current	4, 8, 20, 40	1, 2, 3, 4, 6		100		100	mA	$V_{CC} = V_{CC} Max$ Control Signals = V_{IH}
I _{PPW}	VPP Write Current	4, 8, 20, 40	1, 2, 3, 4	7	12	14	24	mA	Data Write in Progress V _{PP} = V _{PPH}
I _{PPE}	V _{PP} Erase Current	4, 8, 20, 40	1, 2, 3, 4	5	10	10	20	mA	Block (Pair) Erase in Progress V _{PP} = V _{PPH}
I _{PPSL}	V _{PP} Sleep Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$
I _{PPS}	V _{PP} Standby/ Read Current	4, 8, 20, 40	1, 2, 3, 4	0	0.5	0	0.5	mA	$V_{PP} \leq V_{CC}$

TTL Test Conditions: $V_{\rm IL}$ = 0.8 V, $V_{\rm IH}$ = 2.4 V

NOTES:

- 1. All currents are RMS values unless otherwise specified. Typical V_{CC} = 5 V, V_{PP} = 12 V, T = 25 °C.
- 2. Two devices active in word mode, one device active in byte mode.
- 3. Devices not addressed are in sleep mode.
- 4. V_{PP} Generation Circuitry turned off.
- 5. V_{PP} Generation Circuitry turned on.
- 6. Control Signals, CE₁#, CE₂#, OE#, WE#, REG#.

intel®

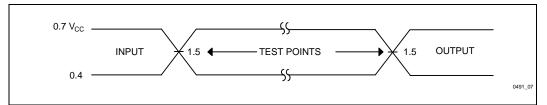


Figure 3. Transient Input/Output Reference Waveform (V_{CC} = 5.0 V) for Standard Test Configuration

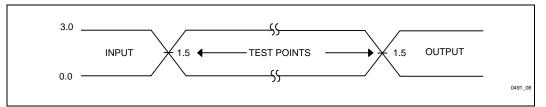


Figure 4. Transient Input/Output Reference Waveform (V_{CC} = 3.3 V) for Standard Test Configuration

8.9 AC Characteristics

AC timing diagrams and characteristics are designed to meet or exceed PCMCIA 2.1 specifications. No delay occurs when switching between the Common and Attribute Memory Planes.

Syr	nbol	Parameter	150 ns	s at 5 V	250 ns	at 3.3 V	Unit
JEDEC	PCMCIA		Min	Max	Min	Max	
t _{AVAV}	t _{RC}	Read Cycle Time	150		250		ns
t _{AVQV}	t _a (A)	Address Access Time		150		250	ns
t _{ELQV}	t _a (CE)	Card Enable Access Time		150		250	ns
t _{GLQV}	t _a (OE)	Output Enable Access Time		75		125	ns
t _{EHQX}	t _{dis} (CE)	Output Disable Time from CE#		75		100	ns
t _{GHQZ}	t _{dis} (OE)	Output Disable Time from OE#		75		100	ns
t _{GLQX}	t _{en} (CE)	Output Enable Time from CE#	5		5		ns
t _{ELQX}	t _{en} (OE)	Output Enable Time from OE#	5		5		ns
t _{PHQV}		Power-Down Recovery to Output Delay. V _{CC} = 5 V		530		670	ns

8.9.1 READ OPERATIONS: COMMON MEMORY

NOTE:

1. Sampled, not 100% tested

intel®

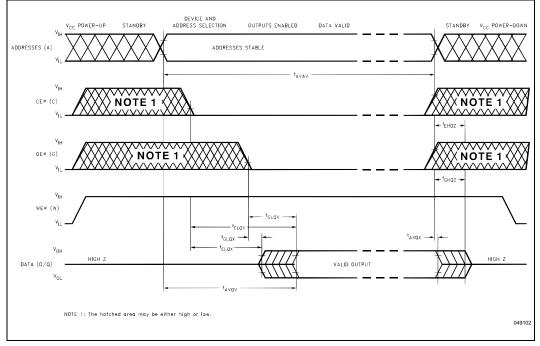


Figure 5. AC Waveforms for Read Operations

5	Symbol	Parameter	150 ns	at 5 V	250 ns	at 3.3 V	Unit
JEDEC	PCMCIA		Min	Max	Min	Max	
t _{AVAV}	t _c W	Write Cycle Time	150		250		ns
t _{WLWH}	t _w (WE)	Write Pulse Width	80		150		ns
t _{AVWL}	t _{su} (A)	Address Setup Time	20		30		ns
t _{AVWH}	t _{su} (A-WEH)	Address Setup Time for WE#	100		180		ns
t _{VPWH}	t _{vps}	V _{PP} Setup to WE# Going High	100		180		ns
t _{ELWH}	t _{su} (CEWEH)	Card Enable Setup Time for WE#	100		180		ns
t _{DVWH}	t _{su} (D-WEH)	Data Setup Time for WE#	50		80		ns
t _{WHDX}	t _h (D)	Data Hold Time	20		30		ns
t _{WHAX}	t _{rec} (WE)	Write Recover Time	20		30		ns
t _{WHRL}		WE# High to RDY/BSY#		140		140	ns
t _{QVVL}		V _{PP} Hold from Operation Complete	0		0		ns
t _{WHGL}	t _h (OE-WE)	Output Enable Hold from WE#	80		120		ns
t _{PHWL}		Power-Down Recovery to WE# Going Low		1		1	μs

8.9.2 WRITE OPERATIONS: COMMON AND ATTRIBUTE MEMORY (1)

NOTE:

1. Read timing characteristics during erase and data write operations are the same as during read-only operations. Refer to *Read Operations: Common Memory*

intel®

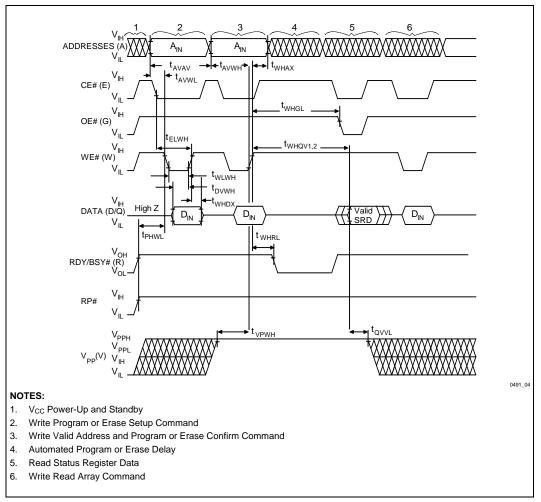


Figure 6. AC Waveforms for Write Operations

5	Symbol	Parameter	150 ns	at 5 V	250 ns	at 3.3 V	Unit
JEDEC	PCMCIA		Min	Max	Min	Max	
t _{AVAV}	t _c W	Write Cycle Time	150		250		ns
t _{ELEH}	t _w (WE)	Chip Enable Pulse Width	80		150		ns
t _{AVEL}	t _{su} (A)	Address Setup Time	20		30		ns
t _{AVEH}	t _{su} (A-WEH)	Address Setup Time for CE#	100		180		ns
t _{VPEH}	t _{vps}	V _{PP} Setup to CE# Going High	100		180		ns
t _{WLEH}	t _{su} (CE-WEH)	Write Enable Setup Time for CE#	100		180		ns
t _{DVEH}	t _{su} (D-WEH)	Data Setup Time for CE#	50		60		ns
t _{EHDX}	t _h (D)	Data Hold Time	20		30		ns
t _{EHAX}	t _{rec} (WE)	Write Recover Time	20		30		ns
t _{EHRL}		CE# High to RDY/BSY#		140		140	ns
t _{QVVL}		V _{PP} Hold from Operation Complete	0		0		ns
t _{EHGL}	t _h (OE-WE)	Output Enable Hold from WE#	80		120		ns
t _{PHEL}		Power-Down Recovery to CE# Going Low		1		1	μs

8.9.3 CE#-CONTROLLED WRITE OPERATIONS: COMMON AND ATTRIBUTE MEMORY

NOTE:

1. Read timing characteristics during erase and data write operations are the same as during read-only operations. Refer to *Read Operations: Common Memory.*

intel®

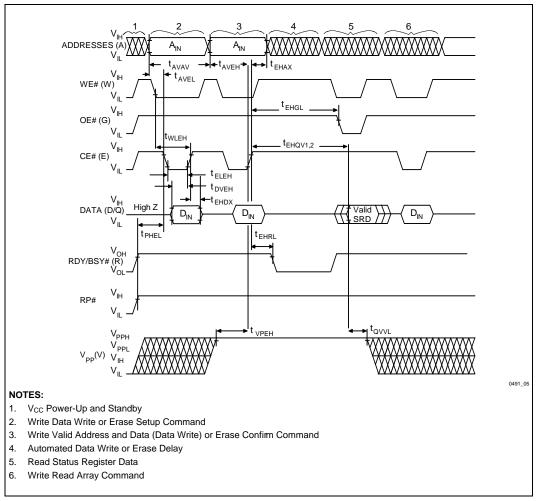


Figure 7. Alternate AC Waveform for Write Operations

8.9.4 POWER-UP/POWER-DOWN

Symbol	Parameter	Notes	Min	Max	Units
PCMCIA					
V _i (CE)	CE# Signal Level (0.0 V < V_{CC} < 2.0 V)	1	0	V _{iMAX}	V
	CE# Signal Level (2.0 V < V_{CC} < V_{IH})	1	V _{CC} - 0.1	V _{iMAX}	V
	CE# Signal Level (V _{IH} < V _{CC})	1	V _{IH}	V _{iMAX}	V
$t_{su}(V_{CC})$	CE# Setup Time		20		ms
t _{su} (RESET)	CE# Setup Time		20		ms
$t_{rec} (V_{CC})$	CE# Recover Time		1.0		μs
t _{pr}	V _{CC} Rising Time	2	0.1	300	ms
t _{pf}	V _{CC} Falling Time	2	3.0	300	ms
t _w (RESET)	RESET Width		10		μs
t _h (Hi-Z Reset)	RESET Width		1		ms
t _s (Hi-Z Reset)	RESET Width		0		ms

NOTES:

1. V_{iMAX} means Absolute Maximum Voltage for input in the period of 0.0 V < V_{CC} < 2.0 V, V_i (CE#) is only 0.00 V ~ V_{iMAX} .

The t_{pr} and t_{pf} are defined as "linear waveforms" in the period of 10% to 90%, or vice-versa. Even if the waveform is not a "linear waveform," its rising and falling time must meet this specification.

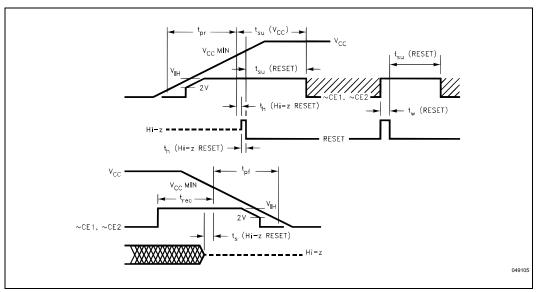


Figure 8. Power-Up Timing for Systems Supporting RESET#

8.10 Erase and Data Write Perfomance^(1,3)

 V_{CC} = 3.3 V \pm 0.3 V, T_{A} = 0 °C to +70 °C

Sym	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units	Test Conditions
	Page Buffer Word Write Time	2		2.2		μs	
t _{WHQV1} t _{EHQV1}	Word/Byte Write Time	2		9 µs	3 mS		
t _{WHQV2} t _{EHQV2}	Block Write Time	2		0.6	2.1	sec	Byte Write Mode
	Block Erase Time	2		0.8	10	sec	
	Full Chip Erase Time	2		51.2		sec	

V_{CC} = 5.0 V \pm 0.5 V, T_{A} = 0 °C to +70 °C

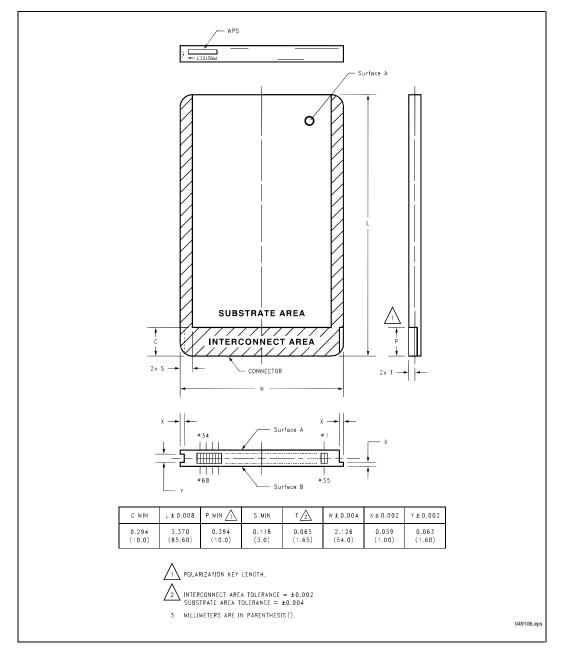
Sym	Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units	Test Conditions
	Page Buffer Word Write Time	2		2.1		μs	
t _{WHQV1} t _{EHQV1}	Word Byte/Write Time	2,4		6 µs	3 mS		
t _{WHQV2} t _{EHQV2}	Block Write Time	2		0.4	2.1	sec	Byte Write Mode
	Block Erase Time	2		0.6	10	sec	
	Full Chip Erase Time	2		38.4		sec	

NOTES:

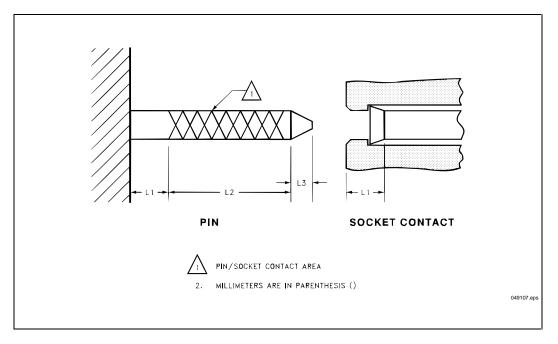
1. 25 °C, and normal voltages.

2. Excludes system-level overhead.

3. These performance numbers are valid for all speed versions.


4. To maximize system performance, the RDY/BSY# signal should be polled instead of using the maximum word/byte write

The maximum word/byte write time is the absolute maximum time it takes the write algorithm to complete. The overwhelming majority of the bits program in the typical value specified.



9.0 PACKAGING

10.0 ORDERING INFORMATION

iMC020FLSP,SBXXXXX

WHERE:

i	= INTEL
MC	= MEMORY CARD
020	= DENSITY IN MEGABYTES (004,020 AVAILABLE)
FL	= FLASH TECHNOLOGY
S	= BLOCKED ARCHITECTURE
Р	= PERFORMANCE
SBXXXXX	= CUSTOMER IDENTIFIER

11.0 ADDITIONAL INFORMATION

Document
Series 2 Flash Memory Cards Datasheet
Series 2+ Flash Memory Card User's Manual
28F016SA 16-Mbit (1 Mb x 16, 2 Mb x 8) FlashFile™ Memory Datasheet
28F008SA 8-Mbit (1 Mb x 8) FlashFile™ Memory Datasheet
AP-377 The 28F016SA Software Drivers

NOTE:

1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International customers shall contact their local Intel or distribution sales office.

2. Visit Intel's World Wide Web home page at http://www.intel.com for technical documentation and tools.